Python | Linear Regression using sklearn - GeeksforGeeks
Python | Linear Regression using sklearn
- Difficulty Level : Easy
- Last Updated : 28 Nov, 2019
Prerequisite: Linear Regression
Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting. Different regression models differ based on – the kind of relationship between dependent and independent variables, they are considering and the number of independent variables being used.
This article is going to demonstrate how to use the various Python libraries to implement linear regression on a given dataset. We will demonstrate a binary linear model as this will be easier to visualize.
In this demonstration, the model will use Gradient Descent to learn. You can learn about it here.
Step 1: Importing all the required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
Step 2: Reading the dataset
You can download the dataset here.
cd C:\Users\Dev\Desktop\Kaggle\Salinity
# Changing the file read location to the location of the dataset
df = pd.read_csv('bottle.csv')
df_binary = df[['Salnty', 'T_degC']]
# Taking only the selected two attributes from the dataset
df_binary.columns = ['Sal', 'Temp']
# Renaming the columns for easier writing of the code
df_binary.head()
# Displaying only the 1st rows along with the column names
Step 3: Exploring the data scatter
sns.lmplot(x ="Sal", y ="Temp", data = df_binary, order = 2, ci = None)
# Plotting the data scatter
Step 4: Data cleaning
# Eliminating NaN or missing input numbers
df_binary.fillna(method ='ffill', inplace = True)
Step 5: Training our model
X = np.array(df_binary['Sal']).reshape(-1, 1)
y = np.array(df_binary['Temp']).reshape(-1, 1)
# Separating the data into independent and dependent variables
# Converting each dataframe into a numpy array
# since each dataframe contains only one column
df_binary.dropna(inplace = True)
# Dropping any rows with Nan values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
# Splitting the data into training and testing data
regr = LinearRegression()
regr.fit(X_train, y_train)
print(regr.score(X_test, y_test))
Step 6: Exploring our results
y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color ='b')
plt.plot(X_test, y_pred, color ='k')
plt.show()
# Data scatter of predicted values
The low accuracy score of our model suggests that our regressive model has not fitted very well to the existing data. This suggests that our data is not suitable for linear regression. But sometimes, a dataset may accept a linear regressor if we consider only a part of it. Let us check for that possibility.
Step 7: Working with a smaller dataset
df_binary500 = df_binary[:][:500]
# Selecting the 1st 500 rows of the data
sns.lmplot(x ="Sal", y ="Temp", data = df_binary500,
order = 2, ci = None)
We can already see that the first 500 rows follow a linear model. Continuing with the same steps as before.
df_binary500.fillna(method ='ffill', inplace = True)
X = np.array(df_binary500['Sal']).reshape(-1, 1)
y = np.array(df_binary500['Temp']).reshape(-1, 1)
df_binary500.dropna(inplace = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
regr = LinearRegression()
regr.fit(X_train, y_train)
print(regr.score(X_test, y_test))
y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color ='b')
plt.plot(X_test, y_pred, color ='k')
plt.show()
Attention reader! Don’t stop learning now. Get hold of all the important Machine Learning Concepts with the Machine Learning Foundation Course at a student-friendly price and become industry ready.