Top Categories
MIT Introduction to Deep Learning | 6.S191
- Category:
- Sub Category:
MIT Introduction to Deep Learning 6.S191: Lecture 1 *New 2021 Edition* Foundations of Deep Learning Lecturer: Alexander Amini For all lectures, slides, and lab materials: http://introtodeeplearning.com/ Lecture Outline 0:00 - Introduction 4:48 - Course information 10:18 - Why deep learn
MIT Introduction to Deep Learning 6.S191: Lecture 1 *New 2021 Edition* Foundations of Deep Learning Lecturer: Alexander Amini For all lectures, slides, and lab materials: http://introtodeeplearning.com/ Lecture Outline 0:00 - Introduction 4:48 - Course information 10:18 - Why deep learning? 12:28 - The perceptron 14:42 - Activation functions 17:48 - Perceptron example 21:43 - From perceptrons to neural networks 27:42 - Applying neural networks 30:21 - Loss functions 33:23 - Training and gradient descent 38:05 - Backpropagation 43:06 - Setting the learning rate 47:17 - Batched gradient descent 49:49 - Regularization: dropout and early stopping 55:55 - Summary Subscribe to stay up to date with new deep learning lectures at MIT, or follow us on @MITDeepLearning on Twitter and Instagram to stay fully-connected!!